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Abstract

We address the problem of navigating a set (fleet) of aircraft in an aerial
route network so as to bring each aircraft to its destination at a specified
time and with minimal distance separation assured between all aircraft at all
times. The speed range, initial position, required destination, and required
time of arrival at destination for each aircraft are assumed provided.

Each aircraft’s movement is governed by a controlled differential equation
(state equation). The problem consists in choosing for each aircraft a path
in the route network and a control strategy so as to meet the constraints
and reach the destination at the required time. The main contribution of the
paper is a model that allows to recast this problem as a decoupled collec-
tion of problems in classical optimal control and is easily generalized to the
case when inertia cannot be neglected. Some qualitative insight into solu-
tion behavior is obtained using the Pontryagin Maximum Principle. Sample
numerical solutions are computed using a numerical optimal control solver.

The proposed model is first step toward increasing the fidelity of continuous-
time control models of air traffic in a terminal airspace. The Pontryagin
Maximum Principle implies the polygonal shape of those portions of the
state trajectories away from those states in which one or more aircraft pair
are at minimal separation. The model also confirms the intuition that, the
narrower the allowed speed ranges of the aircraft, the smaller the space of
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optimal solutions, and that an instance of the optimal control problem may
not have a solution at all (i.e., no control strategy that meets the separation
requirement and other constraints).

Keywords: multi-agent coordination, route network, roadmap, motion
planning, optimal control, multigraph

1. Introduction

Problems in coordinated motion planning for multiple agents can be
roughly classified into two disjoint categories, decoupled coordination (each
agent’s motion is planned separately, then the plans are reconciled), and
centralized coordination (all the agents’ motions are planned simultaneously,
with the interaction constraints considered from the start) [10]. The problems
considered in this paper fall in the latter category. Centralized coordination
of multiple agent motion has been approached using various types of math-
ematical models, discrete (see, for example, Luna 16 and references therein)
and continuous (see, for example, Hu et al. 11, 12, Jung and Ghrist 14, Ghrist
et al. 10, and references therein). A review of research on multi-robot coor-
dination problems can be found in Ghrist et al. [10, section 1.1].

In a number of coordination problems, the moving agents are confined
to a transportation network (also known as roadmap coordination space; see
Ghrist et al. 10). A general mathematical model of a transportation net-
work is a multigraph [20] with the vertices being points in a Euclidean space
and edges being parametrized curves connecting pairs of vertices. Examples
of such networks include railroad networks for trains, railroad networks for
industrial robots, trolley and tram car networks, and airspaces with fixed
nominal routes.

A subclass of network-confined coordination problems consists of those
where the agents’ paths are not given but sought as part of solving the prob-
lem. In such problems, the system exhibits behaviors both continuous (the
agent’s motion along an edge) and discrete (an agent’s choice between two
edges emanating from the same vertex). This coupling of the two behaviors
suggests hybrid control systems (HCS) [26] as a suitable class of models for
approaching the problem. Hybrid systems have been applied to various prob-
lems of transportation (e.g., highway traffic: Munõz et al. 18, Bayen et al.
3), and in particular to aerospace problems [24, 13, 2].
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Although the HCS model proposed herein is in principle applicable to
all types of moving agents whose motion is to be coordinated in a given
transportation network, this paper will be held to the specific context of Air
Traffic Management (ATM). Thus, the moving agents here will be aircraft,
and the central problem will consist of finding routes and speed advisories for
a set of aircraft, subject to initial conditions, separation constraints, speed
range constraints, and an arrival schedule. The role of the transportation
network will be played in this context by an aerial route network (for brevity,
it will be called simply route network), i.e. a collection of pre-defined aerial
routes, to which all aircraft motion is to be confined, in a given airspace.

This paragraph and the next two describe the context for the HCS prob-
lem central to this paper. The context here is a terminal airspace that consti-
tutes a relatively small part of the U.S. National Airspace System (U.S. NAS).
A typical setting is a Terminal Radar Approach Control Facility (TRACON)
operation that spans 0-2 hours. In this context, the role and, therefore, com-
putational demands, of the routing problem (i.e., the combinatorial problem
of finding for each aircraft a walk in the multigraph that represents the
route network) depend on the current ATO practices, on the prognoses for
NextGen, and on the density (see below) of the multigraph. These depen-
dencies are summarized in Table 1. Henceforth, the term dense refers, as in
dense graph [7], to a high ratio between the number of edges and the squared
number of vertices; sparse is the opposite of dense.

In today’s operations, the situation is as follows. Since these operations
rely on air traffic controllers and pilots to keep the collision risk between air-
craft below an acceptable threshold level, a sparse route network in terminal
airspace aids the situational awareness required for controllers and pilots to
perform separation tasks. The limited number of arrival routes in a given
airport runway configuration allows to route aircraft hours in advance of ar-
rival into the terminal airspace, thus removing the real-time urgency from
the routing problem. While air traffic controllers instruct aircraft to turn
away from the assigned route for separation from other aircraft, the general
flow of aircraft (and situational awareness) is retained.

Whether future ATO as proposed by NextGen and SESAR use a sparse
terminal route network, as they do today, or a denser route network to achieve
higher runway utilization, is to be determined. In general, a denser route
network may increase runway utilization and lessen the inefficiencies that
would have arisen from handling operational uncertainty with limited routing
options. Achieving this at the expense of safety, however, is an unacceptable
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Sparser Route Network Denser Route Network
A
d
v
a
n
ta
g
e
s

• Promotes increased con-
troller and pilot situa-
tional awareness

• Computational
tractability

• Comparatively simpli-
fied procedural review
process

• Increased runway uti-
lization and aircraft op-
erational efficiency

• More flexibility in con-
tingency management

D
is
a
d
v
a
n
ta
g
e
s

• Lack of flexibility in
in contingency manage-
ment

• Reduced runway utiliza-
tion and aircraft opera-
tional efficiency

• Potentially costly and
prohibitively lengthy
procedural review
process

• Computational
(in)tractability

• Reduced safety due to
compromised controller
or pilot situational
awareness

Table 1: Implications of the complexity of the routing problem.

trade.
For the HCS problem central to this paper, one is given the following

data:

1. A directed multigraph G = (V,E), with vertex set V and edge set E,
each vertex v ∈ V being a point in a Euclidean space E of dimension
2 or 3. If e ∈ E is an edge from vertex v1 to vertex v2, then the nom-
inal route segment from waypoint v1 to waypoint v2 is a curve in E,
connecting v1 to v2. All such curves will henceforth be assumed recti-
fiable [25] and capable of a parameterization which is continuous and
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piecewise continuously differentiable. A cusp in the curve can be tra-
versed with the assumption (made throughout this paper, but capable
of relaxation) that inertia is neglected, and approximately smoothed if
inertia is to be taken into account. A graph-theoretic path [20] in G is,
therefore, associated (and, henceforth, identified) with a spatial path
that can be traversed by an aircraft. A vertex of G of indegree ≥ 2
[20] (resp., outdegree ≥ 2) corresponds to two or more route segments
merging (resp., diverging). The modeling framework below imposes no
restrictions on the outdegree or indegree of a vertex.

2. A finite set
A = {1, . . . , A}

of aircraft α ∈ A in G. If aircraft α is moving along a path in G, then
the aircraft’s position is specified by the arc length coordinate xα along
the path.

3. For each aircraft α ∈ A, a specification of its initial position xINIT ;α,
required destination xDEST ;α, and the required time tDEST ;α of arriving
at the destination. Here xINIT ;α and xDEST ;α are points in G, each
point specified, for example, by an edge in G and a fractional distance
along that edge.

4. The inertia-free state equations [15] (henceforth the dot denotes differ-
entiation with respect to physical time t)

ẋα = sα, α ∈ A,

where the sα’s are the corresponding speeds, describing the motion of
those aircraft α that have not yet reached their destination. In what
follows, and with the details provided below, the coordinates xα will
play the role of state variables; the speeds sα, of the control variables.

5. State constraints: the separation requirement for each pair of aircraft.
This requirement is described mathematically, in terms of the coordi-
nates xα, in section 3.

6. Control constraints: bounds on the speeds sαe .

7. A cost functional, specified below.

The problem, defined in detail below (definition 4.1) as the Scheduled Routing
Problem, consists in finding for each aircraft α ∈ A a path p(α) in G from
xINIT ;α to xDEST ;α and a control strategy sαp(α)(t), i.e. a function from the time
domain of the model to the set of admissible controls, such that the resulting
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movements xα(t) along the corresponding paths constitute a state trajectory
that satisfies the above state and control constraints and that minimizes the
cost.

In this paper, we use an HCS framework to formulate a model specialized
to the above problem. The main contributions of this model are as follows:

• Reduction of the problem to a special case of an HCS where each so-
lution trajectory lies in only one control mode.

• A clear application of Depth-First Search [7] to search through the con-
trol modes as economically as possible, given the possibly exponential
size of the problem. In the worst case when every aircraft can be as-
signed to any of the paths, and when each edge can serve as a path
by itself, the number of aircraft-to-path assignments, i.e. of functions
µ : A → E, is |E||A|. The latter quantity, however, is a crude overesti-
mate: the set of an aircraft’s paths from initial position to destination
is unlikely to involve a large subset of E. Nevertheless, if every aircraft
has even as few as two such paths, then the number of routings is 2|A|,
which is still exponential in the number of aircraft. This exponential
behavior is a challenge and is mitigated by two factors:

– the applicability of parallel computing, and

– the operational constraints of ATM (at the time of this writing)
that restrict the number of possible aircraft-to-path assignments.

These factors are discussed briefly in section 4.5.

• Reduction of each control mode to a problem in classical deterministic
optimal control, which allows, at least in principle, application of the
fundamental results of Pontryagin [6] and Bellman [4], and of the nu-
merical algorithms that have been developed and implemented [21, 9].

• A natural way to capture an aircraft’s exiting the system; see Remark
4.1, below.

These contributions together allow for parallel computation of solutions: the
classical optimal control problems corresponding to different control modes
can be solved in parallel, and their obtained minimal costs values compared.
Furthermore, the Depth-First Search algorithm itself admits a parallel im-
plementation [22].
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The hybrid model is formulated in section 2. The classical deterministic
optimal control corresponding to a given control mode is formulated in section
4. Numerical solutions to some instances of the problem are given in section
5.

2. An HCS formulation

The HCS defined in this section will be instrumental in a precise formu-
lation of the Scheduled Routing Problem. Assume the data 1)-7), listed in
the 3rd paragraph of section 1.

• For each aircraft α ∈ A, let eINIT ;α denote the edge occupied initially
by aircraft α.

Remark 2.1. However, since a given routing assigns each aircraft to
a specific route, which is a parameterization of a path in G (see sec-
tions 4.1, 4.2 for more detail) and to which the aircraft’s movement is
restricted, the only way for one aircraft to overtake another is if their
two routes permit. In particular, an aircraft may not overtake another
on the same edge.

• Let P
(

eINIT ;α, eDEST ;α
)

be the set of all paths in the multigraph that
begin with the edge eINIT ;α and end with the edge eDEST ;α that contains
xDEST ;α.

Definition 2.1. The length of a path p ∈ P
(

eINIT ;α, eDEST ;α
)

will be
denoted l(p).

• Define a control mode µ as a mapping that assigns each aircraft α to a
path in P

(

eINIT ;α, eDEST ;α
)

. In more detail, µ is a mapping from the
set A of moving aircraft to the union ∪αP

(

eINIT ;α, eDEST ;α
)

such that

µ(α) ∈ P
(

eINIT ;α, eDEST ;α
)

for each α ∈ A

• For aircraft α, each path µ(α) ∈ P
(

eINIT ;α, eDEST ;α
)

is parameterized
by arc length. For computational convenience, the arc length coordi-
nate increases along the path, with the destination coordinate xDEST ;α

being zero for each α. Thus, xα
µ ∈ [−l(µ(α)), 0], and

xDEST ;α = 0
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This convention ensures that an aircraft’s destination is a vertex in the
route network and, furthermore, that it is the same vertex in all control
modes.

• Each aircraft α in each control mode µ is required to reach its desti-
nation xα

µ = xDEST ;α = 0 at a prescribed time tDEST ;α. Upon reaching
destination, the aircraft is no longer in the model; this is reflected in
the restriction on the time domains of the individual state equations
(1), stated below.

• In each µ, have the arc length coordinate xα
µ evolve according to the

state equations

ẋα
µ(t) = sαµ(t) for 0 ≤ t ≤ tDEST ;α, α ∈ A, (1)

where sαµ is the control variable corresponding to the aircraft’s speed
of motion along the path. In this formulation, the state equations are
imposed over different (albeit overlapping) time domains. The problem,
however, will be converted below to one where all state equations are
imposed over the same (rescaled) time domain.

• For each µ and each α, impose the arrival requirement

xα
µ

(

tDEST ;α
)

= xDEST ;α (2)

• For each µ and each α, impose the speed ranges

sMIN ;α
µ ≤ sαµ ≤ sMAX;α

µ (3)

3. The geometry of separation constraints

In some transportation types, including aircraft and trains, every pair
of moving agents must be–as a safety measure–separated by a distance no
smaller than a pre-determined minimal separation. For aircraft in the U.S.
Airspace, the minimal separation requirements are defined by [19] and depend
on numerous factors, including airspace type, air traffic automation systems
in use, and aircraft weight classes3 (the classes defined by [19] are: Small,

3The term weight class is used here because it is an FAA term [19].
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Large, Heavy, B757). The separation requirement will be a key constraint
on the state variables in the Scheduled Routing Problem, formulated below.
Recall (remark 2.1) that the movement of an aircraft is restricted to the
assigned route.

No attempt is made in this paper to capture all such requirements in
detail (see, however, section 6.3 for a discussion of location dependence in
separation requirements). Instead, we will use conservative approximations,
addressing only the following asymmetry: if two moving aircraft are in-trail
(i.e., one is directly following the other along a route segment which is not
necessarily in a horizontal plane), then the minimal separation can depend on
the weight class of the leading and trailing aircraft. To capture this potential
asymmetry, for each pair α1, α2 of aircraft with the first one leading, we
introduce the minimal separation rα1,α2

. If the asymmetry takes place, it can
be written

rα1,α2
6= rα2,α1

(4)

We now calculate the set of all the “forbidden” states, in a control mode
µ of a hybrid system described above; i.e., the set of all states such that
at least two aircraft would have violated the separation requirement if the
system were to enter that state. The scenario shown in Figure 1A has two
aircraft on two different rectilinear edges, which need not lie in a horizontal
plane, with a common vertex and no specified orientation. (If the edges are
curvilinear with low curvature near a common vertex or intersection, these
portions can be approximated by linear segments; otherwise, the analysis
becomes considerably more complicated.)

Remark 3.1. Since edge orientation is not specified, Figure 1 describes four
cases: both aircraft are moving toward the common vertex4, both moving away
from the common vertex, and two more cases in which one aircraft moves
toward, and the other away from, the common vertex.

The case when the two aircraft are on edges that do not share a common
vertex yet are sufficiently close together (possibly intersecting) to allow vio-
lation of the separation requirement is treated in the last paragraph of this
section.

4In ATM, such a vertex is called a merge point. A merge point either must have a third
edge emanating from it (i.e., must have outdegree [20] at least 1), or must be a final point
of arrival for both aircraft.
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(A) (B)

Figure 1: Aircraft 1, 2 on their respective rectilinear edges e1, e2, which share a common
vertex, taken as the origin 0 in R

2. The orientation of the edges is not specified. (A)
The unit vectors a1, a2 are collinear with the respective edges, but their directions do not
necessary agree with the edges’ orientations. (B) With suitably chosen scalars coefficients
c1, c2, the vectors c1a1 and c2a2 are the respective position vectors of the two aircraft.

We will use the Euclidean inner product 〈·, ·〉 and the corresponding norm
|| · || in the 2-D space containing the two edges. Pick the coordinate system5

with the common vertex as the origin and with the unit vectors a1, a2 as
the basis vectors that, regardless of the edge orientations, point from the
origin toward the respective aircraft. With suitable scalars c1, c2, the vectors
c1a1 and c2a2 are the respective position edges of the aircraft. The squared
distance between the two aircraft is

||c1a1 − c2a2||
2 = (c1)

2 + (c2)
2 − 2c1c2〈a1, a2〉 (5)

Equating the latter expression to the squared minimal separation, say, r21,2,
we obtain the equation

(c1)
2 + (c2)

2 − 2c1c2〈a1, a2〉 = r21,2 (6)

of an ellipse in the c1c2-plane. The corresponding set of conflicting sets is
described by the elliptical sector obtained by intersecting the ellipse-bound
region

(c1)
2 + (c2)

2 − 2c1c2〈a1, a2〉 < r21,2

5This coordinate system is chosen here because it results in the simplest form of the
squared distance between the two aircraft (the form we obtain here is the left-hand side
of (5)). Other systems can be used, possibly resulting in a more cumbersome algebra.
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with the open octant c2 > c1 > 0, corresponding to the case when aircraft 1
is the one closer to the origin. In the other case (aircraft 2 is closer to the
origin), the corresponding elliptical sector is obtained by intersecting

(c1)
2 + (c2)

2 − 2c1c2〈a1, a2〉 < r22,1

with the octant c1 > c2 > 0. The role of the angle θ between the edges
e1, e2 in both sectors is the equality 〈a1, a2〉 = cos(θ). An example of two
such sectors is shown in Figure 2. The asymmetry of the gray-shaded region

Figure 2: An example of two elliptical sectors in the c1c2-plane corresponding to conflicting
states.

about the dashed diagonal is the asymmetry (4).
In each of the four cases listed in Remark 3.1, the respective continu-

ous state coordinates x1
µ, x

2
µ of aircraft 1, 2 in control mode µ map to the

coefficients c1, c2, as follows (recall the notation introduced in definition 2.1):

1. If both aircraft are moving toward the common vertex, then xα
µ =

l(eα)− cα for α = 1, 2.

2. If both aircraft are moving away the common vertex, then xα
µ = cα for

α = 1, 2.

3. If aircraft 1 is approaching, and aircraft 2 going away from, the common
vertex, then x1

µ = l(e1)− c1, x
2
µ = c2.

4. If aircraft 2 is approaching, and aircraft 1 going away from, the common
vertex, then x1

µ = c1, x
2
µ = l(e2)− c2.

If θ ≥ 90◦, then in the last two cases µ allows only one in-trail sequence, so
the minimal separations used for the two sectors in Figure 2 are equal. If the
two aircraft 1, 2 are on one and the same edge, then the set in the c1c2-plane
of the conflicting states appears as in Figure 3 (the asymmetry about the
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Figure 3: An example of two stripes in the c1c2-plane corresponding to conflicting states
of two aircraft on the same edge.

dashed diagonal corresponds to (4). The mapping from the continuous state
coordinates x1

µ, x
2
µ to the coefficients c1, c2 is constructed analogously to the

above four cases.
The above calculation is illustrated, for an example of two aircraft, in

Figure 4. Each discrete mode’s set of conflicting states is shown as a connected
[1] gray region. For dimension A above 2, one must compute for each pair of

(A) (B) (C)

Figure 4: An example of two aircraft whose paths in the route network are prescribed and
overlap. The black star shows the beginning of the overlap in (A) and the corresponding
state (both aircraft being at that point) in (B); the white star, the end of the overlap in
(A) and the corresponding state (both aircraft being at that point) in (B). The system,
shown in (A), has 7 discrete modes (B) with both aircraft in the route network. Each
mode’s set of separation-violating states, shown in (B) as a connected [1] gray region, is
“glued” to some of the others. The result of the gluing is the connected region shown in
(C).

aircraft the set of states violating the separation requirements. Each such set
is a cylinder, or union of cylinders, with the base shaped as shown in Figure
4C, in the total state space ∪µXµ. We note that the set of all separation-
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violating states in ∪µXµ is cylindrical in the sense of [14, Definition 2.2],
the latter definition a key requirement for the applicability of a number of
theoretical results of [14].

A case that remains to be treated is that of two aircraft, labeled here
1 and 2, on edges that do not share a vertex, yet allow the two aircraft to
violate the separation requirement. The two edges may or may not intersect.
On denoting the position vectors of the edges’ initial vertices as h1,h2, the
above calculation can be generalized to this latter case by calculating the
squared distance between the aircraft using, instead of the left-hand side of
(5), the expression

||(h1 + c1a1)− (h2 + c2a2)||
2 (7)

and updating the subsequent calculations accordingly. Note that taking both
h1,h2 to be at the origin would reduce the general formula (7) to the special
case depicted in Figure 1.

4. The Scheduled Routing Problem and the equivalent Stacked

Scheduled Routing Problem

For ease of exposition, we precede the general formulation of the problem,
suitable for an arbitrary number of moving aircraft, with a specific, two-
aircraft, example.

4.1. An instance of the scheduled routing problem for two aircraft

The initial state of a two-aircraft scheduled routing is shown in Figure
5A; the required destinations (with possibly different required arrival times)
for the two aircraft, in Figure 5B. In this Figure,

α = 1 : eINIT ;1 = e1, e
DEST ;1 = e8,

α = 2 : eINIT ;2 = e2, e
DEST ;2 = e7.

The only paths that take the aircraft from initial location to destination
(aircraft 1 from e1 to e8, and aircraft 2 from e2 to e7) are

p1 : e1, e3, e6, e8; p2 : e1, e4, e8; p3 : e2, e3, e6, e7; p4 : e2, e4, e7. (8)

Aircraft 1 can take either p1 or p2; aircraft 2, either p3 or p4. Consequently,

P
(

eINIT ;1, eDEST ;1
)

= {p1, p2}, P
(

eINIT ;2, eDEST ;2
)

= {p3, p4}.

13



(A) (B)

Figure 5: An initial state (A) and required destinations (B) of a 2-aircraft set.

(A) (B)

(A) (D)

Figure 6: The four paths (8), in that order, for the problem in Figure 5.

No other paths can be taken. The paths p1, . . . , p4 are shown, in that order,
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in Figure 6. We obtain the control modes µ1, . . . , µ4, defined as follows:

α µ1(α) µ2(α) µ3(α) µ4(α)
1 p1 p1 p2 p2
2 p3 p4 p3 p4

The state space corresponding to each control mode µ is a rectangle consisting
of those state vectors

(

x1
µ, x

2
µ

)

which are compliant with the arc length bounds
and separation constraints.

The above system is subject to the operational requirement (2), here for
α ∈ A = {1, 2}, that aircraft 1 and 2 arrive at their destinations at times
tDEST ;1, tDEST ;2, respectively.

In each of µ1, µ4, the pairwise conflict zone is simply connected [1]; i.e.,
consists of only one connected component and has no “holes”. Consequently,
once each of the conflict zones, of the form shown in Figure 4C, is approx-
imated by an ellipse-bounded region, the state spaces for µ1, µ4 have the
topology shown in Figure 7A. In each of µ2, µ3, the paths of the two air-
craft have two crossings (regarded here as short overlaps), hence the pairwise
conflict zone has two connected components (Figure 7B).

(A) (B)

Figure 7: Topology of approximated conflict zone in the state spaces (A) for µ1 and µ4

and (B) for µ2 and µ3. The black dot (near top right), the required destination coordinate
pair

(

xDEST ;1
µ , xDEST ;2

µ

)

.

Each control mode µ is subject to the initial condition

xα
µ(0) = xINIT ;α for α ∈ A (9)
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The simplifying assumption underlying (9) is that both aircraft start their
movement simultaneously. This assumption can be relaxed and is used here
for mathematical simplicity only.

Finally, for each control mode µ, we can specify a cost functional that suits
the goals implied by the context of the specific application. One example,
impractical but chosen for simplicity, is a cost functional that equals the
average (squared) speed of the aircraft during the flight:

∑

α∈A

∫ tDEST ;α

0

(

sαµ
)2

dt (10)

Thus, for each control mode µ, we have an optimal control problem with
state equations (1), subject to the initial condition (9), the control constraints
that specify permissible value ranges for the speeds sαµ, and the following
additional constraints:

• The arrival requirement (2).

• The separation requirement, defined by constructing a function

gSEP ;α1,α2

µ ((xα
µ)α∈A)

of the state6 such that the pairwise conflict zone (shown as a gray-
shaded region in the appropriate panel of Figure 7) is exactly the set
of states satisfying the functions

gSEP ;α1,α2

µ ≥ r2α1,α2
. (11)

For the pair (α1 = 1, α2 = 2) (and, in the general scheduled routing problem,
for every pair (α1, α2)) of aircraft, inequality (11) defines a union (denoted
Xα1,α2

µ ) of regions in the state space of µ, each region bounded by an ellipse-
cylindrical (“tube-shaped”) hypersurface. The separation requirement thus
translates into the requirement that a solution (the state trajectory) is dis-
joint from the interior of every such region for every pair of aircraft.

6This construction has already been carried out: the latter function is to be defined as
the squared distance (7), where all the quantities with subscript 1 correspond to α1; all
those with subscript 2, to α2.
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4.2. The Scheduled Routing Problem: a general formulation

The central problem of this paper, which will be called the Scheduled
Routing Problem, can now be stated as follows.

Definition 4.1. (Scheduled Routing Problem) Given a set A of aircraft
moving on a route network G = (V,E) subject, in each control mode µ, to
the state equations (1), the initial condition (9), the state constraints (11),
and the control constraints (3), find

(a) a control mode µ and
(b) a corresponding control strategy (sµα(τ))α such that the corresponding

state trajectory xµ(t) = (xα
µ(t))α∈A satisfies (2) and minimizes the to-

tal cost over all the control modes.

Part (a) of the Scheduled Routing Problem consists of routing the set A
of aircraft; i.e., of choosing for each aircraft a path from origin to destination.
A solution found for part (a) heavily affects the process of solving part (b):
there may be control modes µ for which part (b) has no feasible solution.
Some ways to approach part (a) and the corresponding computational costs
are discussed in section 4.5.

Part (b) of the Scheduled Routing Problem is an optimal control problem
with a Lagrange cost function. The problem, however, has two non-standard
features that hamper application of classical optimal control theory and nu-
merical computation of solutions. One feature is the presence of intermediate
constraints: in the arrival requirement (2), all time instants tDEST ;α except
the latest one are interior points in the time domain of the problem. The
other is the following non-autonomous behavior: an aircraft, once at desti-
nation, no longer “participates” in the constraints or in the cost. We now
use a formalism similar to that in [8] to reduce this problem to a classical,
optimal control problem, which is autonomous if its cost functional is. In the
rest of this section, the subscript µ is dropped for brevity.

4.3. The Stacked Scheduled Routing Problem (SSRP), equivalent to the
Scheduled Routing Problem

Let (αq)
A
q=1 be an ordering of the aircraft by their arrival times (arranged

in nondecreasing order). Let t0 = 0, and for each q > 0 let

tq = tDEST ;αq

Define a new (normalized) time τ ∈ [0, 1] and, for each of the intervals
[tq, tq+1], q = 0, . . . , A− 1, introduce the following:
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• the state variable ρq(τ), which will play the role of “physical time” in
the interval [tq, tq+1]:

tq ≤ ρq(τ) ≤ tq+1;

• the state variables yαq (τ), α ∈ A, related to the above xα(t) by

yαq (τ) = xα(t) if ρq(τ) = t; (12)

• the vector notation yq(τ) = (yαq (τ))α∈A;

• the control variables sαq (τ), related to the above sα(t) by

sαq (τ) = sα(t) if ρq(τ) = t, (13)

• the control variables zq > 0, which represent the “rate of flow of physical
time” with respect to the normalized time τ .

The above definition of the Lagrange cost reflects the assumption that an
aircraft, once at destination, “disappears” from the system, in the sense of
being no longer subject to the separation requirement with the other aircraft.
From (1), (12), and (13), one readily obtains the state equations

d
dτ
y
αq′

q = zqs
αq′

q for q′ ≥ q + 1

d
dτ
ρq = zq







α ∈ A. (14)

Finally, the initial conditions and arrival requirement, together with the re-
quirement that physical time and state change continuously when passing
from one interval [tq, tq+1] to the next, translate to the endpoint constraints

yα0 (0) = xINIT ;α (see (9)) (a)

ρq(1) = ρq+1(0) (b)

ρq+1(0) = tq+1 (c)

y
αq′

q (1) = y
αq′

q+1(0) for q
′ ≥ q + 1 (d)

y
αq+1

q+1 (1) = xDEST ;αq+1 (e)























































0 ≤ q < A. (15)

Conditions (15.bc) ensure the continuity of physical time flow; conditions
(15.d), the continuity of an aircraft’s motion.
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Remark 4.1. The state equations (14) and the endpoint constraints (15.d)
come with the restriction q′ ≥ q + 1 because they are imposed, in agreement
with (1), only for those aircraft that have not yet reached their destination:
by the end of the q-th time period, the first q aircraft have reached destina-
tion. Thus, upon reaching destination, an aircraft is excluded from the model,
and is no longer represented by a state equation or subject to separation con-
straints with the other aircraft. This eliminates the necessity to continue
modeling an aircraft whose role in the model has already been fulfilled.

Throughout the rest of this paper, the choice (10) of the cost functional is
assumed in all the numerical examples. Other choices of the cost functional
are discussed in section 6. Since the time intervals between each consecutive
pair of arrivals are modeled, in this latter formulation, as if they were occur-
ring simultaneously (“stacked” upon one another), the following definition
will be adopted.

Definition 4.2. (a) To each control mode µ, associate the newly obtained
optimal control problem consisting of: the state equations (14), endpoint
constraints (15), cost functional (10), the separation constraints on the
variables y

αq′

q , the control constraints corresponding to (3) specifying the
speed ranges on the variables s

αq′

q , and the positivity constraints

zq > 0,

will be called a µ-stacked optimal control problem.

(b) The set of all µ-stacked optimal control problems will be called a Stacked
Scheduled Routing Problem (SSRP).

(c) Of all the optimal solutions to all the µ-stacked optimal control problems,
a solution achieving a lowest cost is called an optimal solution to the
SSRP.

Thus, an SSRP consists of a collection of optimal control problems, and an
optimal solution to the SSRP tells not only how quickly the aircraft are to
move, but also how they should be routed. The SSRP is equivalent to the
Scheduled Routing Problem (definition 4.1).
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4.4. Implications of the Pontryagin Maximum Principle for the SSRP

The assumption that we are in a specific control mode µ is still in force.
Denote by ξyq , ξρq the costate variables7 for yq, ρq. In those states where none
of the state constraints is active, the Hamiltonian for each control mode of
the SSRP is

H = −f0 +
∑

q;q′≥q+1

zqs
αq′

q ξyq +
∑

q

zqξρq ,

where f0 is the performance index (running cost) corresponding to the cost
functional (10). Since H does not explicitly depend on any of the state vari-
ables, it follows that the costate variables are constant along the trajectory
portions clear of state constraints and, consequently, the maximization of H
in each such state is a problem of static maximization. This, in turn, im-
plies the existence of an optimal state trajectory in which these portions are
segments of a straight line on each [tq, tq+1]. If, furthermore, there is only
one optimal trajectory, then its portions away from obstacle boundary are
necessarily rectilinear.

With the state equations (1) and the set (3) of control constraints, the
set of all states reachable from a given state y0

µ = (y0;αµ )α∈A is the pointed
polyhedral cone that consists of all states yµ = (yαµ)α∈A satisfying

0 ≤
(

yα1

µ − y0;α1

µ

) sMIN ;α1
µ

s
MAX;α2
µ

≤ yα2

µ −y0;α2

µ ≤
(

yα1

µ − y0;α1

µ

) sMAX;α1
µ

s
MIN ;α2
µ

, α1 6= α2.

This cone has vertex y0
µ and is the intersection of the half-spaces

yα2

µ − y0;α2

µ ≤
sMAX;α1
µ

s
MIN ;α2
µ

(

yα1

µ − y0;α1

µ

)

, α1 6= α2,

yα2

µ − y0;α2

µ ≥
sMIN ;α1
µ

s
MAX;α2
µ

(

yα1

µ − y0;α1

µ

)

, α1 6= α2,

and
yαµ ≥ y0;αµ , α ∈ A.

7Also referred to as adjoint variables in literature on Pontryagin’s Maximum Principle;
e.g., see [15, section 11.8-2(a)].
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The narrower the speed ranges (3), the narrower the cone, and the smaller
the portions of an optimal trajectory that lie on the boundary of the obstacle

∪α1 6=α2
Xα1,α2

µ .

This suggests that, with narrow speed ranges, optimal trajectories for the
Stacked Scheduled Routing Problem can be well approximated by piecewise
linear curves.

4.5. An approach to computing solutions and an analysis of the associated
costs

The total number of the control modes µ possible at the outset (i.e.,
before checking for those µ not allowing a feasible control strategy) is

∏

α∈A

∣

∣P
(

eINIT ;α, eDEST ;α
)
∣

∣ .

Paths which are, or contain, cycles are allowed in the model and can be
desirable in some applications, e.g. in air traffic models where aircraft may
be sent into a holding pattern to absorb delay. With regard to the SSRP
specifically, the following holds true:

Remark 4.2. Every solution to the control problem described above will cor-
respond to exactly one of the control modes µ. This removes two difficulties
associated inherently with hybrid systems and absent from classical control
systems, the risk of excessively frequent switchings of control mode, and the
necessity for “control mode memory,” i.e. for keeping track of the control
modes entered prior to the current time in the system’s evolution.

Each set P
(

eINIT ;α, eDEST ;α
)

can be computed using the Depth-First
Search algorithm, whose computational cost is known [7, section 23.3] to be
O(|V | + |E|)8. By using parallel computation in the Depth-First Search,

8Here V and E denote, respectively, the vertex set and the edge set of the multigraph
that models the airspace, as defined in item 1 in the numbered list of section 1. The
symbol O has the following meaning (see, e.g., [7] and [15, section 4.4-3]): if f(n) and g(n)
are functions of the positive integers n, and if starting with some integer n0 one has

|f(n)| ≤ (some constant)g(n) for all n ≥ n0,

then one calls g(n) an upper bound for f(n) as n → +∞ and writes “f(n) = O(g(n)) as

n → +∞,” or simply “f(n) = O(g(n)).”
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however, one may reduce the physical running time by a factor proportional
to the number of processors available. Another reduction of computational
cost of routing in the context of the SSRP is attempted in [23] by imposing
a weighted graph structure on the Cartesian product [15, 12.7-1]

∏

α∈A

P
(

eINIT ;α, eDEST ;α
)

in such a way that the shortest paths give the routings for the most desirable
control modes µ .

These considerations suggest the following stepwise procedure for finding
an optimal solution to an SSRP, in which the worst case–of having to enu-
merate all the control modes explicitly–is assumed (step 2 in the procedure).
Upper bounds on the computational cost are provided, in []’s, where possible.

1. Compute all the sets P
(

eINIT ;α, eDEST ;α
)

. [If this is accomplished by
running Depth-First Search for each aircraft α ∈ A, hence the compu-
tational cost is O(|A|(|V |+ |E|)). The physical running time, however,
can be reduced by using parallel processing; the reduction would be by
a factor proportional to the number of processors.]

2. Enumerate all the control modes µ. [An upper bound exponential in
the |A|.]

3. For each µ, compute an optimal solution to the corresponding Stacked
Scheduled Routing Problem, and the cost Cµ of that solution. [The
computational cost depends on the particular choice of the compu-
tational method; see, for example, [21]. The numerical results in this
paper were produced using a solver based on Sequential Quadratic Pro-
gramming (SQP); see section 5.3. Since SQP is iterative, the task of
estimating computational costs runs into the difficulty of estimating
the rate of convergence, which depends on the specific initial guess and
gradients arising in the execution of the method.]

4. Select a control mode µ∗ such that Cµ∗ ≤ Cµ for all µ, and declare
the corresponding optimal solution the optimal solution for the SSRP
(definition 4.2). [O(the number of control modes).]
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Quantities Plot symbol

y1q , s
1
q —

y2q , s
2
q +

y3q , s
3
q – –







































for q = 1, . . . , A.

Table 2: The legend used in Figures 9, 11, 12-16, below.

5. Sample numerical computations for the Stacked Scheduled

Routing Problem

5.1. Assumptions and notational conventions

All the route networks appearing in the numerical examples of this sec-
tion are graphs; namely, no two vertices are connected by more than one
edge. This allows to specify each path as a sequence of vertices, rather
than of edges. To simplify the computations, the separation requirements
for each pair of aircraft are assumed symmetric. The numerical code admits
a straightforward, albeit somewhat cumbersome algebraically, generalization
that will dispense with this assumption.

In panels (a, b) of Figures 9, 11, 12-17, the computed trajectories and
controls are plotted using the symbols described in Table 2. In panels (A)
(and, when present, (D)) of these Figures, as well as in Figures 8, 10, the
route networks are depicted as directed graphs; aircraft, as points labeled
with values of α, each point serving as a center of a circle with radius equal
to half the required pairwise separation. In all plots, axis label ρ refers, in
agreement with the above, to physical time. All plots were generated using
the Matlab software [17].

The first two of the examples in section 5.4 are “abstract,” in the sense
that no particular application is specified for them. Thus, the units of length
and physical time are left unspecified. Application and units are, however,
specified for the third example. The required destination yDEST ;α is in each
case the end of the path assigned to aircraft α in control mode µ:

yDEST ;α = 0.
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5.2. The cost function

The cost function used in the following examples is (10) which, on convert-
ing the scheduled routing problem to a Stacked Scheduled Routing Problem
(definition 4.2), takes the form

A
∑

q=0

∑

q′≥q+1

∫ 1

0

(

s
αq′

q

)2

ρqdτ.

5.3. Computational methods for finding optimal control strategies

In each control mode, the corresponding optimal control problem can be
approached using a numerical method from any suitable family; see, e.g., [5]
for a survey of such methods and [21] for a thorough exposition. For reasons
of convenience at the time of this research (easy access to code which is open-
source, platform-independent, and self-sufficient), the authors used the OCP
solver [9], which is based on Sequential Quadratic Programming (SQP) [21].

5.4. Numerical examples

5.4.1. Three aircraft, one control mode

The route network for this example is the 2-dimensional directed graph
shown, together with the initial locations of the three aircraft, in Figure 8.
Each aircraft can traverse only the edge on which it is positioned initially,
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0.5

1

1.5

 v
1

 v
2

 v
3

 v
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 v
5

α = 1 α = 2

α = 3

Initial state

Figure 8: The route network and the initial locations of the aircraft in the example of
section 5.4.1.

hence only one control mode µ arises.
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The speed ranges are given by

α 1 2 3
sMIN ;α
µ 0.3 0.3 0.4
sMAX;α
µ 1.5 0.8 0.9

The required times of arrival at destination are

α 1 2 3
tDEST ;α 2.0 3.0 4.0

The minimal required separation is 0.3.
The numerical solution computed for the control mode µ is shown in

Figure 9.

Remark 5.1. The numerical data for this example show that an optimal
control strategy (speed profile) is piecewise constant. For solutions in which
no two aircraft are ever at minimal separation, this structure of an optimal
control strategy is consistent with the Pontryagin Maximum Principle.

5.4.2. Two aircraft, four control modes, wide speed ranges

The route network for this example is the 2-dimensional directed graph
shown, together with the initial locations of the two aircraft, in Figure 10.
The two paths considered here are

p1 : v1, v2, v8, v9, v10, v6; p2 : v1, v2, v3, v4, v5, v6

The speed ranges are given by

α 1 2
sMIN ;α
µ 0.6 0.6
sMAX;α
µ 1.4 1.4

The required times of arrival at destination are

α 1 2
tDEST ;α 28.3 36.1

The minimal required separation is 1.0.
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Figure 9: Numerical solutions (for the only possible control mode) in the example of
section 5.4.1. (A) State trajectory vs. time. (B) Control strategy vs. time. (C) The
positions of the aircraft in the route network at ρq(1) for q = 1. (D) The positions of
the aircraft in the route network at ρq(1) for q = 2 (aircraft α = 2 has just arrived at its
destination and exited the system).

The control modes are as follows.

α µ1(α) µ2(α) µ3(α) µ4(α)
1 p1 p2 p2 p1
2 p2 p1 p2 p1
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Figure 10: The route network and the initial locations of the two aircraft in the example
of section 5.4.2.

The respective numerical solutions for these modes are shown in Figures
11-14.

The total costs for each control mode are as follows:

control mode µ1 µ2 µ3 µ4

total cost 37.5823 38.8925 45.4652 31.5979

Therefore, the optimal routing and control strategy are achieved in control
mode µ4.

Remark 5.1 applies to the numerical results shown for this example.

5.4.3. Two aircraft, four control modes, narrow speed ranges

In this example, the route network, 3-dimensional, models a terminal
airspace, which consists of two arrival paths merging into the same final
approach segment. The route network and the initial positions of the two
aircraft is shown in Figure 15. Here the edge (v6, v7) is the final approach to
a runway. For realism, one unit of arc length is taken here to be 3 nautical
miles, and the unit of speed is taken to be 200 knots, a typical speed allowed
in U.S. terminal airspaces at altitudes below 10, 000 feet.

The two paths considered here are

p1 : v1, v2, v8, v9, v10, v6; p2 : v1, v2, v3, v4, v5, v6
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Figure 11: Numerical solutions for control mode µ1 in the example of section 5.4.2. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

The control modes are as follows.

α µ1(α) µ2(α) µ3(α) µ4(α)
1 p1 p2 p2 p1
2 p2 p1 p2 p1
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Figure 12: Numerical solutions for control mode µ2 in the example of section 5.4.2. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

The speed ranges are given by

α 1 2
sMIN ;α
µ 0.8 (= 160 kts) 0.8
sMAX;α
µ 1.2 (= 240 kts) 1.2
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Figure 13: Numerical solutions for control mode µ3 in the example of section 5.4.2. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

The required times of arrival at destination are

α 1 2
tDEST ;α 21.2 (= 0.03 hrs) 28.1 (= 0.04 hrs)

The minimal required separation is 1.0 (= 3 NM).
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Figure 14: Numerical solutions for control mode µ4 in the example of section 5.4.2. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

In control modes µ2, µ3, the control problem has no solution, since the
path lengths are such that the imposed speed ranges prevent at least one
aircraft from reaching its destination at time. The numerical solution for
control mode µ1 is shown in Figure 16 and incurs a total cost of 49.2396. In
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Figure 15: The 3-dimensional route network and the initial positions of the aircraft
(centers of the circles in horizontal planes), for the numerical example of section 5.4.3.
Here the route network is a terminal airspace. The radius of each circle is half the minimal
required pairwise separation of 3 NM.

µ4, the computed optimal control strategies prescribe the constant speeds

s1µ4
= 1.03, s2µ4

= 0.82

and the solution (Figure 17) incurs a total cost of 41.5594. Therefore, the
optimal routing and control strategy are achieved in control mode µ4.

Remark 5.1 applies to the numerical results shown for this example.

6. Discussion

The above modeling framework addresses the problem of navigating a set
of aircraft in a route network, with constraints on the initial locations of the
aircraft, required destinations, and required times of arrival at destination, as
well as on the minimal pairwise distances between aircraft. We now discuss
several directions in which the above model can be varied and generalized.

6.1. A model that includes inertia

Inertia can be included by treating both the yαµ ’s and the sαµ’s as state vari-
ables, and the accelerations aαµ as the control variables. The corresponding
new state equations would assume the form

ẏαµ = sαµ
ṡαµ = aαµ

}

, α ∈ A

The rescaling of physical time to normalized time τ ∈ [0, 1] formulated in sec-
tion 4.2 would be carried out analogously. The resulting problem falls in the
class of the kinodynamic motion planning problems; some related theoretical
results can be found in [14] and in references therein.
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Figure 16: Numerical solutions for control mode µ1 in the example of section 5.4.3. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

6.2. Different choices of the cost function

Of the vast number of possible choices of cost function, we briefly discuss
two.

• In situations where inertia cannot be neglected and acceleration must
be the control variable (or among the control variables), it may be de-
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Figure 17: Numerical solutions for control mode µ4 in the example of section 5.4.3. (A)
State trajectory vs. time. (B) Control strategy vs. time. (C) The positions of the aircraft
in the route network at ρq(1) for q = 1.

sirable to keep the movement as smooth as possible, e.g. for passenger
comfort or cargo safety. A cost function that would serve this goal is
the sum of the integrals of the squared accelerations:

∑

α∈A

∫ tDEST ;α

0

(

aαµ
)2

dt
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• In situations where it is undesirable to impose times tDEST ;α of arrival at
destination as rigid constraints, and preferable to minimize the absolute
differences between the actual arrival times tAAT ;α. This goal would be
served by taking the sum

∑

α∈A

(

tDEST ;α − tAAT ;α
)2

as the cost.

6.3. Asymmetric and anisotropic pairwise separation requirements

In some applications, the pairwise separation requirements for aircraft can
be asymmetric (i.e., dependent on the relative position of the two aircraft) or
anisotropic (i.e., dependent on the specific location in the airspace), or both.
An example of asymmetry is as follows. If two aircraft are consecutively
in-trail and at the same altitude, and the leader’s and follower’s respective
weight classes [19] are Heavy and Small, the required separation is consid-
erably larger than if the two aircraft types were in the opposite order. An
example of anisotropy is the requirement of vertical separation between two
aircraft, where aircraft are required to maintain either 1000 ft vertical sepa-
ration or the prescribed lateral separation previously discussed; the resultant
shape of an aircraft’s safety envelope is a cylinder. A mathematical form for
such an anisotropic constraint would use, not the Euclidean norm, but one of
the following form: putting ak = (axk, a

y
k, a

z
k), the norm in the left-hand side

of (5) would be replaced by a “mixed” norm, Euclidean in the xy-plane, and
the max-norm along the height z. If r were the minimal horizontal separa-
tion, imposed when the two aircrafts’ altitudes differ by less than a quantity
h, the mixed norm and the corresponding separation constraint would be

||c1a1 − c2a2||mixed

:= max

{

1
r

√

(c1ax1 − c2a
x
2)

2 + (c1a
y
1 − c2a

y
2)

2
, 1
h
|c1a

z
1 − c2a

z
2|

}

≥ 1

The computations in section 3 would have to be modified accordingly and
would no longer have the closed quadratic form.
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